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REPORT No. 114

SOME NEW AERODYNAMICAL RELATIONS

By h ~. hNK

This report was prepared for the National Advisory Committee for Aeronautics, and is a
series of three notes, designed to extend the modern themy of aerodynrunics and to develop it

so that it may be applied to certain speoial problems in some later papers.
The motion of solid bodies in contact with each other is influenced by friction; but, never-

theless, it is often desirable to neglect this, and to make the necessary corrections later. Simi-
lmly, in treating the motion of a soLidbody through a fluid, it is desirable to begin with the
case of a motion in which friction is neglected-i. e., witk.motion in a nonviscous fluid.

When two bodies are moving in a fluid, the disturbance in the fluid produced by one causes
forces to act upon the other; and similarly, when there is but a single body in motion, any
portion of it experiences a force due to the disturbances produced in the fluid by the other
portions of the body. When the fluid is a nonviscous one, these forces may be calculated;
and, from analogy with the phenomena of electrodymnics, they are caLIed‘(induced” forces.

In the diagram let F be the ai~ force acting upon the aerofoil; let w be the relative
velocity of a particle of air close to the mofoil; let V be the velocity of flight. Drawing the
last two ss vector-e, it may be proved tJ_atFis perpendicular to the vector v and that the down-
wash w is in the line of F, so that ~= V– U, as shown. Further, I have proved that

W=kv
F

— b being the sp~ of the aerofoil and p the density of the fluid.‘here k= +#p?F

Reinembering that the dynamical pressure q= +A#, this maybe written k =$g=

The liftisthe component of F’perpendic&r to F; and the &ag is the component parallel
to V. That is:

L=F+ . .

As i first approtiation in the calculation of D let us write L= F—i. e., identify v and V;

where g=; p’P. “

This formuIa for the induced’ drag.is the one used by Prandtl and all recent writers on the
subject of aeronautic.

In the tit part of this paper use wilI be made of this rdation and others derived, using
the same approximation; in the second part the error introduced by mak@ this approxima-
tion will be discussed; and in the third part a new theorem will be developed and its usefulness
shown. .
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THE RELATIVE ABSORPTION OF POWER OF AIRPLANE WINGS AND PROPELLERSIN “
A NONVISCOUS FLUID

This note has particular reference to tie comparison of the induced forces acting on a single
pair of wings with those acting on a propeller having a large number of blades. In order to
arrive &ta proper basis for comparison ii is convenient .to consider power, instead of forco. The
wings require a certain amount of externally supplied power for a given performance. Ml of
this power, which is to be considered as “induced,” is transmitted to the air acted upon by the
wings if the motion is steady. The power absorbed by the propeller, however, is partially
recovered in the power utilized to propel the airplan& Only the difference between theipower
absorbed and the power utilized is transmitted to tlx.surrounding air, and only thk difference
is to be considered as the induced power of the propeller.

IX L.be the lift of the wings (or the thrust of the propeller); V the velocity of the airplane
(or of the propeller), relative to the surrounding air; b the span of the wings (or the diameter
of the propeller); and p the density of the air. As stqted.above, the induced dmg corresponding

T3
to a velocity V is D =$-, hence the induced power absorbed by the wings is given by

P“d’%
(1)

g being the dynamical pressure; that is, g= 1/2PV. Similarly, the induced power of the pro-
peller is given by

‘ind=’w+%-’l‘2)
If. the term

L
—r be less than unity, the expression within the brackets may be de-mlopcd-- —

in a series. On this condition we ha~e for the propeller-

Pind = w 1 n? ,+
aKf —m16 ~q;

–+ (2)

Hence, if the thrust per unit area of the propeller disk be small in comparison with the dynam-
ical pressure, the fit term of the series gives a close approximation to the induced power. It
therefore appears thatj on this condition, the induced powers absorbed by W@ and propeller
agree.

It may therefme be stated that.: If the must per unit area of the propeller disk be small
n comparison with the dynamical pressure, then a wing and a propeller of equal span (or diarn--
eter), lift, and dynamical pressure require the same imiiucedpower.

This agreement is not accidental, but is due tb the similarmechanical conditions of the two
cmes. The thrust of a propeller is produced by giving momentum to the air which pasms
through its disk. If the indraft substantially equal lhe velocity, then the mass of air passing
t!.mugh the disk per second is

~&K “-
)

4P ,

The lift of the wing is, however, produced by imparting momentum to the mass of air
passing its plane in a diiection perpendicular to the direction of flight, at that particular moment.
But the share of each particle of air in the productio~ of lift varies from point to point according
to its position. With reference @ tie flow in the igfiuit.e plane perpendicular to the wing, it
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SOM33 NEW AERODYNAMICAL BELATIDNS. 133

behaves like a single line in a twodimensional fluid accelmated perpendicular to its length.
Let such a line have the length b, &d let p be the density of the fluid. Then such an infinite
two-dimensional fluid motion around the line has the same kinetic energy as the mass

.

.-

.—

moving with the same velocity as the line. That is to say, the whole infinite disk of air has
the same mechanical effect m a circle Wth the diameter 6 cut out of the fluid, in the tm-dimen-

.._=

sional case, and moving Iike a rigid body with the line of len@h b.
-

Hence the equiv&nt mass-of air ~owing past the ~-per second and producing the Iift k ‘ ~~~
----

#

the

F t)’:p.

In the two cases the same miss of air produces the same lift (or thrust), and this is why
same induced power is required.
If the thrust be large, or ~ the -reIocity of the propeller be smaIl, the theorem no longer

holds true. Otherwise a stationary rotating prope~er, as in a helicopter, would require *an
infinite amount of power. The ori.ggindexpression (iitead of the development into series) .
for induced power must now be used, because the conditions which permitted the mpansion
in series are not miinta”med. If ~= 0, ,~pikssion (2) becomes

L–z--P,nd=L —
W+

and “it appears that the induced power of a propeller without forward velocity is equal to the .
induced power required by a sirgle wing of span equal to the diameter of the propeller and
moving with “avelocity correapondirg to a dynamical pressure of

L
!l= TTJ i. e., P=%p. =

This expression is +e fourth part of the thrust per unit areti of the prope~er disk. There-
fore, a helicopter requires the same induced power as a TV@ of the same load and span, moving
with a speed corresponding to a dynamical pressure equal to the fourth part of the thrust per
unit area of disk. At the same time this required power equals the induced power absorbed by
a wing with twice the load, the same spm and a vekwit.y corresponding to a dynamical pm.sum
equaI to the thrust per unit area of disk
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MORE ACCURATE CALCULATION OF DRAG

Referring to the introduction, it is known that

in w~ch F is the force acting upon a wing—

v is the velocity of a particle of_air near the wing.
V is the velocity of flight.
w is the down-wash velocity.
t is the span of the wing. ,

In the deduction of these formuke it has been assumed that the effective parts of the longi-
tudinal vortices, which give rise to the lift, maybe considered to be straight. This assumption
certainly is allowable, and is approximately true.,

F

I 1

,.%9.( v
Referring to the diagram,

V=?Y+G . .

and, since w= k, V=@ (i +V). Th~efore~ s~ce k is a small quantity, V-v (1 + lI?), or
v= V(I— JJY). Hence

.

L= F(I–lW)”---
D= U’(1–+k2).

Let us now introduce a new coefficient, “k’= ~% where @= 1P V’—i. e., is the dynamical pres-

sure corresponding to the velocity of fliiht. Hence, neglecting terms of h~h orders,

v=v+@”v
L= F–WX

andf therefore, D =?c’z:(l +1.57/’) ,

h Part I we used .

D=&+; i. e., ll=kt L,

It is now seen that, using the second approximation, the induced drag is greater than this.
Since k’ is small, 1.5 W is small compared with unity; and therefare the error made in ueing the
first approximation is not large. % is the reason why the aimphw formula gives results
agreeing well with experience. .
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SOWE NEW AEBODYNAMICAL RELATIONS. 135

Let us cahdate the error for a practical case; e. g., span t = 35 feet; lift L=2,00cI pounds;
velocity V= 100 @hr. Then k’ =0.0203; W= 0..fW4, and the error 1.5 k“ =0.06 of 1 per
cent. Even if the density is decreased to one-half the normal vahe aud the velocity to two-
thirds of the pretious value, k’ therefore beco~u 4.5 greater, the error is only 1.3 per cent.

As a consequence, the origintd simple formula,

may be considered to be sficiently exact for ordinary purposes. For extraordinary cases the
more exact form may be necessary.

.

.

-—.

—.: .—

..



.

THE FORCES ACTING ON BODIES MOVING IN A PERFECT FL~ID

The force acting on an aerofoil moving in a perfect fluid is ca.lcdatcd by taking into con-
si&ration the mutwd effect of the velocity h the immediate neighborhood of the aerofoil and
the intensity of the ~orticea imagined in the space owmpied by the aerofoil. This leads to the
result stated in the introduction. The resulting forca on the ruwofoilequals the product of the
velocity refernxl to and the intensity of the vortex, and its direction is perpendic.uhw to the
vqlocity and the vortex, as shown.

It is not generally known, however, that these are not the only forces between a body Qnd
a perfect fluid moving around it; and that forces between them may exist e~en if the efTcct of
the body must not necessady be considered as due ta hypothetical vortices occupying the space
of the body. I sha~ deduco the follomhg theorem: If the body maybe replaced by sources and
sinks, a source of intmsity J will give rise to a force -– u ,7 p, in -whicho is the velocity of the
fluid and p its density, o indicating the vector character of the velocity.

This theorem is analogous to the one which states that if there is a hypothetical vortex
of intensity J at a point in a fluid where the veIo&ty is v, the force per unit length of the

.-. , ----
vortex is the vector product p [Z ~.

In both theorems the fluid is -considered ‘to b{kcompressible,, to be flowing irrohition-
ail-y,and to be in a steady state. “They can be proven for moro general assumptions also.

In order to prove this theorem I shall first use geperal considerations and then shall dewhp
the mathematical formula Let us consider a liquid flowing in any manner inside a closed
boundary, which mtiy be thought of as a solid shelI. There wiIl be preesures acting on each
ehxnent of the boundary, and these will be equal and opposite tu the prwsures on the outside
if the same liquid is flowing around the immersed body, and has the same velocity at ouch poin ~
of the boundary as the fluid inside has. This flow inside may be due to vortices and h sources;
but” for these to give rise to a steady condition and also to exist as forming a disttict isolated
system, certain conditions must be satisfied. In particular, for a vorkx to remain stationary
there must be certain applied forces, according to the well-known theorem of Kutt.a. If the ●

vorticity at any point has the ai@lar velocity w, and if at that point the velocity of flow is V,

the force required to maintain a steady state is p [~~ dr, where p is the density and dr is an

, element of vohune. (This may be written p [ ~m d,” where J is the strength”of the vortex.)
This force. must be due ta the action of the soIid boundary; and, if tho sydcm is to ho self-
contained, this force must be equal and opposite to the force of the liquid acting on tic boundary;
i, e., must be equal b the force acting on the boundary due to the liquid flowing on the outiidc.,

Again, as far as the flow inside the boundary is caused by souroea, it is evident that, in
order that tho system may be self-contained, there must be both sources and sinks whose in-
tensities are equal, and we must picture thwe es connected by thin tubes, so that the fluid
disappearing at a sink may be brought to the source out of which it flows. Further, if these
positi~e and negative sources are to be stationary, and thus giv~ rise to a.steady motion, certain
forces must be applied. If the fluid entering any sink has the velocity V,j and if, on emerging
from the tube at the.source, it hrwthe velocity -V2,the-strength of each being J (i, e., the volume
output per unit of t.irne),the momentum has been increased in a unit of time by an amount
pJ(}72– V,), consequently there must be a for& applied; and, as before, this force must- bo
due to the boundary, and must-be equal to the forcg_acting on the boundary due to the liquid
flowing outside. “

Thus, if in any problem the effect of an actual did immemed in a stream of fluid is con-
sidered as due to an ‘(equivalent” distribution of. vcwtices or &f sources in the space occupied
by the solid, we have the value of the force acting on the solid.
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.

The exact proof may be deduced mathamaticdly. If F is the velocity at any point inside

the boundary, the pressure is–$ ~; therefore the force agaimt the boundary from within is .-

p – %9 where El is a unit vector normal to an element of surface dS, and drawn outwards.-5J*,T ,

Therefore, if the veIocity of the fluid outside is the same at each point as that ti~de, the force —

acting on the boundary from unkbm’ is+ ~sfil T2&S. This may be transformed into an integral

through the volume, viz:

$~iil~%!i=~~grad TWT=pfV ~. ~ci, using Gibbs’s symbols:.-

This holds true whether the velocity at the boundary has a component nornd to it or not.
‘We must now introduce the condition. that no fluid passes the surfam, and therefore no

momentum is transferred througghit. If momentum were flow@ through the boundary, the

flow per unit of time would be p~ ~ TWS. Thus must equaI zero, therefore; and, as before,
.—

the integral may he transformed into a volume one, viz:

Site this equals zero, it may be subtracted from the previous integral giving the force,
and hence

F=:j%I FdS
=Pf(vv.v– WV- 7div P’j c%

&- ‘Pf(rxrot ~– ~div n dr.

This is a formal statement of the theorem.
The conchsions derived from this theorem aggee with other results of hydromechanics

and with the generaI laws of mechanics. A source and a vortex are the two elementary SOIU-.
tions of the partial differentird equation determining the motion. Each of these solutions can
be derived from the other, and it is possib~e to pass continuotily from one to the other. For
th=e. reasons it would be impossible that for one of the solutions a theorm dsts without
there being a corresponding theorem for the other. The ccmtinuous transformation may.
begin with two &tant two-dimensional -rortices of oppo~te sign but of equal intensity (tlg. 2).
The distante may grow less and less tilI at last the two vortices forma double vortex, the inten-
sity of each increasing at the same time in such a way that the product of the intenaatyand the
distance is constant. The doublet vortex is identical with a doublet source, consis&g of a
rectilinear source and equal sink, whose axis is perpendicukr to that of the vortex doublet.
This source doublet may be continuously transformed into two separate sources, by increasing
the distance of the source and sink and at the same time demeuk” th~ ~t~ty, so bat the
product of the intensity of each and the distance remains constant as before.

The velocity of the fluid in the neighborhood of these ~ortices or sources maybe supposed
to have a constant rate of change in the direction of the axis of the doublet vortices. The rate
of change in the direction of the axis of the doublet some= is perpendicular to the &at men-
tioned rate, ~ the velocity is irrotatiomd and without divergence, and both have equal absolute
magnitude. Then the force acting on the two ~ortices is constant during the whole transfor-
mation. It certainly would be absurd to expect this constant force suddedy to vanish either
on proceeding from the doublet vortex. to the doublet source, which is onIy another expression
for the same phenomenon, or on transformhg the doublet source to two separate sources.
‘We are led therefore to attribute to each source the form given by the theorem.

.)1Thisiewrittenin ordinary notation: Pf( T= grad JTx+ V= grad Tr+ TZ grad Ttz dr. “
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The vortex and the source are the elements of the two possible

139

kinds of discontinuities. ..—
If the fluid streams

F/g. 3

along a boundary with constant .vehxity on one side and with a diilerent
co&ant veloci~y on the other side (fig: 3) Eukr*s theoran states that the ‘ —

pressure on the two sides of the boundary is different. The difference is

and is dhected at ri&t an&s- ta the veloeity and to ‘the vort~x. fi~
force on the vortex is directed toward the space of the greater velocity.

The other kind of discontinuity occurs if the boundary isperpendicular
to the two constant velocities (fig. 4). This is onIy possible if the boundqry
is occupied by sources, uniformly distributed, with the intensity ( ITa– VI)
per unit of. area. They again are in fluid having the velocity A (V, + VJ
and the force acthg on them is ~ (T, + V,) (F, – VJ p. This equals the

~ (V’, – V’l) p, the pressurebeing higher on the side of the smaller velocity.
This boundary is to be represented by vortices per-
pendicular to the discontinuity of ve@city and uni-
formly distributed over the boundary. They can
be considered to be in fluid having the velocity ~
(~, + V,). ‘l?heirintensityp erunitof areais (V. – VI).
The difference of pressure ec@ls the product of the
intensity ~er unit area, the velocity and the density.

Fig 4
-—

pressure obtained b; apply@ ox th~orern to {he si&le sources which
boundary.

CONCLUSIONS. ‘

Consider two point sources with the intensities J, and J, at the
velocity in the neighborhood of the first source due to the second is

Jzp
4KE”

Hence, according to the theorem:

are distrl%uted over the

distance R apmt. The
..—

Two sources of the same sign produce attractive forces between them which are propor-
tional to the product of their intensities, and inversely to the square of their diatwnce ap~t. .
‘l%e magqitude of the force is

J~J6p.

Two sources of opposib signs produca repulsive forces according to the same law.
The consideration of the velocity in the neighborhood of a source due to an element of n

vortex or in the neighborhood of this element due to a source show:
A source and an element of a vortex produce a force on each other proportional to the prod-

uct of their intensities and inversely to the square of their distxmce. The force is perpendicular
to the vortex and to the line of connection, and has the magnitude

J,. J,
~.sinq7

where P is the a@e between the direction of the vortex and the line joining it to the source.
These two facts are analogous “ta the theorem known before, which & derived from the

relation between the force on a vortax, its velocity, and its intensity:
Two elements of vortices having the same direction produce repulsive forces on each

other, which are proportional to the product of their intensities and inversely to the square of
their distance apart. The magnitude of the force is

where ~ is the =gle between the direction of the vortices and the Jne joining the elements.
Elements hav-@ opposite directions produce forces of attraction according to the same law.
~. B.—These forces produced by or on vortices refer to elements of @t length.]

(For two dimensiomd probkrns the denominator would always be 2 r l?.)
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These statements are valid for. steady nmtion.. If there are no draneous forces or only
such as have a potential, the fluid motion involving vortices cm not bo steady if the vortex has

. a finite maggtude. The ~ortex mows with thdiuid, hence it has no velocity relative to the
- fluid and therefore requires no extraneous force.t .,For sources a similar theorem is valid, for

the same reason. It is dif%cult, however, to connect a physical meaning with it. The motion
of the positive source would not even be stable. . .

A pair consisting of a souru and a sink of .equalktmsitik experiences a force proportional””
to the difference of the velocititw at the two points; Passirig to the ltit, we see that-the force
on such a doublet-is proportional to ‘its intensity and to the rate of change of the veIocity in the
direction of its axis. These cases are of some pr@ical importance, it being possible to rcpro-
sent moving bodies by such doublets.

If two such doublets are situated one behind the other, the two ~ms coinciding, the influence
of the two nearest sourcm predominates. Two such doublets repel each other, wi&ha forco
whose magnitude is

iii, M, -
m

where Ml and M, are the strengths of the doublets_ ...-Thdforce varies inmwsely as the fourth
power of the distance. It is to be expected, therefore, that it will not bc of practical importance.

It may be. mentioned that the forces b.etwwm a single linear vor.ta and a doublet are
inversely proportional to the square of the distance. TIM force and its direction also depend
on the angle between the vortex and the axis of the doublet.

TVewill omit the consideration of peculiarities of higher order, as we do not think that we
shall be forced to apply them.

APPLICATIONS

It has been noted .by several writersa that the combination of two equal and opposite
sources at a finite distanca..apartwill, when placed in a fluid flowing parallel to the line joining
the two sources, give rise to such a distribution of lims of flow that the.total effect is tho same
as that produced by a body of the general shape of an airship.

Thus let the intensities of the sources be + J and –J; let their distance apart be a; and
let the velocity of flow paralleI to the line joining the sources be v. Then the area of the greatwt
cross-section of the ‘(equivalent airship” is, approximately,

s=4- -- ,.

and therefore the greatest diametm is J+- r.

The length of the equivalent airship is approxiinateIy
-

If ~ is small compared with aa, the airship is an elongated one; and it will be sufficient lA)

assume that tl=~~ l=a; or, if 1 and S are gjvenj .&at J=vS; a=l.

‘iVe.will now apply this general theory to two problems.
1. The mIcuIation of the force acting between two similar airships in motion in a perfect

fluid, side by side, at a distance apart of their axes given by b.
.- . ..- . ..7

1Hehnholtz’s theorem.
2 D. W. Taylor: Ship+haped stream forms. !&ns, Btitieh Inst. Naval Arch., VOI.S5, p. S85, 1804.
Solid stream forms and the depth of water nwewu-y toavoidabnormal resistance of ship. Ib., Vol.36, p. 234,

1895.
G. Fuhrmann: Theoretiphe und experimentelle Unf.erauchngen an Ballonmodellen. Jahrbi der Motorluft-

schiff-Studiengeaellechaft. 1911-12; .- .-
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Each airship may be represented by a pair of sources, as just noted.

141

Let us label them 1,2,3, 4; 1 and 3 ire positive, 2 and 4 are negative. The attraction betwem --
1 and 3 and between 2 and 4 is *

J’p #.&p
fu=fiqrp-4T~2———— .

The forces between I and 4 and between 2 and 3 are repulsions and their com~onents ~erDen-

...

9

—
.- ..-—

dimdar to the ues of the airships are
vWp

f14=fm=–~&i5”

So the total attractive force on each airship is

~= #?Yp 1 6
–( )4T ?F-(tP+l’)* “

In a practical case let 1=000 feet, S’=2,500 square

.

ieek, tI=80 *, b =200 feet.
The calculated force comes out to be 800 pou-ds. Nit onIF is ‘this force v~ smalI, but in
practice airships do not came so dose together. !% the result is to prove that the aerody-
namicaI forces due to displacement are smaU.

2. The calculation of the longitudinal buoyancy of an airship model in a wind tunnel,
due to the pressure gradient in the air stream. The force on the airr+.ip descriied as in the
previous problem would be

F=wS (v, –~lj P=vS~. a = ~. (vohune).

This fornda is the one used in practice and is sfficientIy accurate for an elongated model.
It can not, however, be applied to a short one. Consider, for instance, a sphere of radius r.

It is “equivalent” to a doublet of @e intensity 2n-P.v=; v (vohune]. The force act~m on

it g p v ~- (volume) =1.5** (vohune).2 Hence the propei caefhient for a short airship
.

lies between 1 sad l+.
More cnmpJ.icateddistributions of sources which me equivaknt .ta ddlerent forms of &

ships may be foqnd in the paper by Fuhrmann. This should be used in the calculation of the
exact error, applying the theorem deduced in this paper.
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